1. Introduction to High-energy-rate Metalworking.- 1.1. Background.- 1.2. High-energy-rate Processes.- 1.2.1. Operation Concepts.- 1.2.2. Basic Types of Operations.- 1.2.3. Nature of Load Application.- 1.3. Development of the Field.- 1.3.1. Early Studies.- 1.3.2. Explosive Forming.- 1.3.3. Explosive Hardening.- 1.3.4. Explosive Compaction.- 1.3.5. Explosive Welding.- 1.4. Continued development of the field.- 1.4.1. Cooperative Effort.- 1.4.2. Thoughts for the Future.- References.- 2. Propagation of Stress Waves in Metals.- 2.1. Dynamic Propagation of Deformation.- 2.2. Elastic Waves.- 2.2.1. Introduction.- 2.2.2. Elastic Waves in Isotropic Materials.- 2.2.3. Elastic Waves in Anisotropic Media.- 2.3. Plastic Waves.- 2.3.1. Preliminary Considerations.- 2.3.2. The von Kármán and Duwez Plastic Wave Theory.- 2.3.3. Plastic Shear Waves.- 2.3.4. Additional Considerations on Plastic Waves.- 2.3.5. Adiabatic Shear Bands.- 2.4. Shock Waves.- 2.4.1. Hydrodynamic Treatment.- 2.4.2. More Advanced Treatments and Computer Codes.- 2.4.3. Attenuation of Shock Waves.- 2.4.4. Elastic Precursor Waves.- 2.5. Defect Generation.- 2.5.1. Dislocation Generation.- 2.5.2 Point Defects.- 2.5.3. Deformation Twinning.- 2.5.4. Displacive/Diffusionless Transformations.- 2.5.5. Other Effects.- Acknowledgements.- References.- 3. Metallurgical Effects of Shock and Pressure Waves in Metals.- 3.1. Principal Features of High-strain-rate and Shock deformation in Metals.- 3.2. Permanent Changes: Residual Microstructure-Mechanical Property Relationships.- 3.2.1. Grain Size Effects.- 3.2.2. Shock-induced Microstructures.- 3.2.3. Shock Deformation Versus Conventional Deformation (Cold Reduction).- 3.2.4. Effects of Shock Pulse Duration in Shock Loading.- 3.2.5. Effects of Point Defects, Precipitates and Other SecondPhase Particles.- 3.3. Response of Metals to Thermomechanical Shock Treatment.- 3.3.1. Shock-mechanical Treatment, Stress-cycling and Repeated Shock Loading.- 3.3.2. Microstructural Stability and Thermal Stabilization of Substructure.- 3.4. Summary and Conclusions.- Acknowledgements.- References.- 4. High-rate straining and Mechanical Properties of Materials.- 4.1. Introduction.- 4.2. Testing Techniques at High Rates of Strain.- 4.2.1. Testing Techniques at Intermediate Rates of Strain.- 4.2.2. Testing Techniques at Impact Rates of Strain.- 4.2.3. Attempts to Reach Higher Strain Rates.- 4.3. Mechanical Properties of Materials at High Rates of Strain.- 4.3.1. Theoretical Considerations.- 4.3.2. Strain-rate Dependence of fcc Materials.- 4.3.3. Strain-rate Dependence of hcp and Orthorhombic Materials.- 4.3.4. Strain-rate Dependence of bcc Materials.- 4.3.5. Mechanical Response at Very High Strain Rates.- 4.3.6. Effect of Changing Strain Rate (Strain Rate History).- 4.4. Mechanical Equations of State at High Rates of Strain.- 4.5. Summary.- References.- 5. Basic Consideration for Commercial Processes.- 5.1. Explosive cladding.- 5.1.1. Introduction.- 5.1.2. Cladding Sites and Facilities.- 5.1.3. Range of Products.- 5.1.4. Bonding Parameters.- 5.2. Design of Clad Assemblies.- 5.2.1. General.- 5.2.2. Shell Plates.- 5.2.3. Tube Plates.- 5.2.4. Metal Requirements.- 5.2.5. Extension Bars.- 5.2.6. Temperature of Metals.- 5.3. Assembly of Clads.- 5.3.1. Metal Preparation.- 5.3.2. Assembly.- 5.3.3. Protection of Cladding Plate Surface.- 5.4. Explosives.- 5.4.1. Main Charge.- 5.4.2. Initiation.- 5.5. Double Sided Clads.- 5.6. Multilayer Clads.- 5.7. Post Cladding Operations.- 5.7.1. Preliminary Examinations.- 5.7.2. Stress Relief.- 5.7.3. Levelling.- 5.7.4. Cutting and Trimming.- 5.7.5. Ultrasonic Testing.- 5.8. Destructive Testing.- 5.9. Tubular Components.- 5.9.1. Nozzles.- 5.9.2. Other Tubular Components.- 5.10. Explosive Hardening.- 6. Mechanics of Explosive Welding.- 6.1. Introduction.- 6.2. The Mechanism of Explosive Welding.- 6.3. Parameters of the Explosive Welding Process.- 6.3.1. The Collision Parameters Vp, Vc,?.- 6.3.2. Limiting Conditions for Welding.- 6.4. Interfacial Waves.- 6.4.1. Introduction.- 6.4.2. Mechanisms of Wave Formation.- 6.5. Analysis of Flow in the Collision Region.- 6.5.1. Introduction.- 6.5.2. The Interfacial Pressure Profile.- 6.5.3. The Flow Pattern in the Collision Region.- References.- 7. Explosive Welding in Planar Geometries.- 7.1. Introduction.- 7.2. Material Combinations and Flyer Thicknesses.- 7.3. Basic Welding Geometries.- 7.3.1. Parallel Geometries.- 7.3.2. Inclined Geometries.- 7.3.3. Parallel/Inclined Geometries.- 7.3.4. Double Inclined Geometries.- 7.3.5. Geometries Producing Welding Conditions Transiently.- 7.4. Selection of Bonding Parameters.- 7.4.1. General Considerations.- 7.4.2. Impact Velocity.- 7.4.3. Explosive Loading.- 7.4.4. Collision Angle/Collision Point Velocity.- 7.4.5. Stand-Off Distance.- 7.4.6. Anvil.- 7.4.7. Surface Finish.- 7.5. Direct Measurement of Bonding Parameters.- 7.5.1. Introduction.- 7.5.2. The Dautriche Method.- 7.5.3. Wire and Pin Contactor Methods.- 7.5.4. High Speed Photography.- 7.5.5. Flash Radiography.- 7.5.6. Velocity Probe.- 7.5.7. Slanting Wire Methods.- 7.6. Miscellaneous Welding Geometries for Sheets and Plates.- 7.6.1. Lap Welding of Narrow Plates.- 7.6.2. Seam/Line Welding of Sheets.- 7.6.3. Scarf Welding.- 7.6.4. Butt Welding.- 7.6.5. Spot Welding.- 7.6.6. Patch Welding.- 7.6.7. Channel Welding.- 7.7. Welding of Foils.- 7.7.1. Theoretical Considerations.- 7.7.2. Welding of Single Foils and Simple Multi-Foil Laminates.- 7.7.3. Wire-Reinforced Composites.- 7.8. Applications.- 7.8.1. Introduction.- 7.8.2. Clad Plate.- 7.8.3. Dissimilar Metal Joints.- 7.8.4. Transition Joints.- 7.8.5. Honeycomb.- 7.9. Conclusions.- Acknowledgements.- References.- 8. Welding of Tubular, Rod and Special Assemblies.- 8.1. Introduction.- 8.2. Explosive and Implosive Welding Systems and Bonding Parameters.- 8.2.1. Welding Systems.- 8.2.2. Welding Mechanisms.- 8.3. Welding of Duplex and Triplex Cylinders.- 8.3.1. Development of Welding Techniques.- 8.3.2. Characteristics of the Welded Systems.- 8.3.3. Residual Stresses.- 8.3.4. Conventional Processing.- 8.4. Tube-to-tubeplate Welding.- 8.4.1. Introduction.- 8.4.2. Geometry and Parameters.- 8.4.3. System Characteristics.- 8.4.4. Properties of Joints.- 8.5. Explosive Plugging of Tubes in Tubeplates.- 8.5.1. Applications.- 8.5.2. Plugging Systems.- 8.5.3. Plugs, Materials and Testing.- 8.6. Multilayer Foil Reinforced Cylinders.- 8.6.1. Introduction.- 8.6.2. Implosive Welding System.- 8.6.3. Pressures and Stresses.- 8.6.4. Structural Properties.- 8.7. Interface Wire Mesh Reinforcement.- 8.7.1. Welding Systems.- 8.7.2. Metallurgical Characteristics.- 8.7.3. Mechanical Properties.- 8.8. Transition Joints.- 8.8.1. Applications and Systems.- 8.8.2. The Machined Joint.- 8.8.3. Welding of Tubular Joints.- 8.9. Solid and Hollow Axisymmetric Components.- 8.9.1. Introduction.- 8.9.2. Welding Systems.- 8.9.3. Hydrostatic Extrusion.- References.- 9. Explosive Forming.- 9.1. Introduction.- 9.2. Formability of Engineering Alloys.- 9.3. Mechanical Properties of Explosively formed Components.- 9.4. Air and Underwater Forming Systems.- 9.5. Die and Dieless Forming.- 9.6. Analysis of Final Shapes in Free-Forming.- 9.7. Parameters and Analysis of Die Design.- 9.8. Forming of Domes and of Elements of Spherical Vessels.- 9.9. Forming and Punching of Tubular Components.- 9.10. Miscellaneous Forming Operations.- 9.11. Conclusion.- References.- 10. Powder Compaction.- 10.1 Introduction.- 10.2 Dynamic Compressibility of Powders.- 10.3. Type of Shock Wave and Density Distribution.- 10.4. Temperature and Strain Rate Effects.- 10.5. Phase Transitions in Shock Loading Mixtures.- 10.6. General Mechanical Properties of Compacted Powders.- 10.7. X-ray and Other Methods of Evaluating Residual Stress Distribution.- 10.8. Basic Problems in Fabricating Semi-finished Parts.- 10.9. Static and Dynamic Compaction: A Comparison of Material Properties.- References.